Lesson 8: Electron Configuration

If we are interested in showing the arrangement of electrons in an atom in their orbitals, we can do this with electron configuration and orbital diagrams.

Electron configuration

List each type of ____________ showing number of electrons as an ________________

\[3p^4 \]

Orbital Diagrams

______________ represent orbitals; __________________________ represent electrons

<table>
<thead>
<tr>
<th>Orbital Diagram</th>
<th>Electron Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 1s ↑</td>
<td>1s^1</td>
</tr>
<tr>
<td>He 1s ↑↓</td>
<td>1s^2</td>
</tr>
</tbody>
</table>

Hydrogen has 1 electron. It will be in the 1s orbital because it is the most favorable position (greatest attraction to nucleus).

Helium has 2 electrons.

Follow the periodic table left to right, top to bottom to see the order in which electrons fill orbitals.
Goals:

- Derive electron configurations (short- and long-hand) and draw electron box diagrams of neutral atoms 1-20 and their ions based on their position on periodic table.
- Identify the name, symbol, valence electrons of the element or ion based on the electron configuration or box diagram.
- Determine # of core and valence electrons.
- Determine # of paired and unpaired electrons.

PRACTICE: Given the following atoms/ions, use the periodic table to...

a) Draw box diagrams for each element
b) Write the longhand electron configuration for each
c) State how many total & unpaired electrons are present
d) Circle the valence electrons.

1. Li
 Total electrons: _________ Unpaired electrons: _________
 Longhand electron configuration: ________________________________

2. Be
 Total electrons: _________ Unpaired electrons: _________
 Longhand electron configuration: ________________________________
3. B
Total electrons: _______ Unpaired electrons: _______

Longhand electron configuration: __

4. C
Total electrons: _______ Unpaired electrons: _______

Longhand electron configuration: __

5. N
Total electrons: _______ Unpaired electrons: _______

Longhand electron configuration: __
6. O
Total electrons: _______ Unpaired electrons: _______

Longhand electron configuration: ____________________________________

7. F
Total electrons: _______ Unpaired electrons: _______

Longhand electron configuration: ____________________________________

8. Ne
Total electrons: _______ Unpaired electrons: _______

Longhand electron configuration: ____________________________________
9. K
Total electrons: _________ Unpaired electrons: _________

Longhand electron configuration: __

10. Ca
Total electrons: _________ Unpaired electrons: _________

Longhand electron configuration: __

Rules and Principles for Electron Configuration:

Aufbau Principle: __

__
Pauli Exclusion Principle: __

Hund’s Rule: __

IONS: Predict ion formed by Group A element by ___________________________.

Group B elements are the _____________________________.

1. Al^{3+} Total electrons: _______ Unpaired electrons: _______

Longhand electron configuration: __
2. S^{2-}
 Total electrons: _________ Unpaired electrons: _______

Longhand electron configuration: __

3. Cl^-
 Total electrons: _________ Unpaired electrons: _______

Longhand electron configuration: __

4. Ca^{2+}
 Total electrons: _________ Unpaired electrons: _______

Longhand electron configuration: __
Shorthand Electron Configuration:

- Saves you time in writing electron configurations for heavier elements.
- Makes use of the fact that Noble gases have ________________________________
 (short hand is also known as “Noble gas notation”)
- **Steps:** Write the chemical symbol for the noble gas in front of the configuration in square brackets. Write the configuration for any additional electrons in the standard format.

Calcium: \([\text{Ar}] \ 4s^2\)

Calcium has “the configuration of Argon plus 2 4s electrons”

Write the shorthand electron configuration for these neutral atoms. Then, write the number of total electrons.

1. Li ________________________________ Total e's : ______
2. O ________________________________ Total e's : ______
3. K ________________________________ Total e's : ______

Write the shorthand electron configuration for the ions of these elements. Then, write the number of total electrons.

1. Be \(\rightarrow \) ______ ________________________________ Total e's : ______
2. F \(\rightarrow \) ______ ________________________________ Total e's : ______
3. Al \(\rightarrow \) ______ ________________________________ Total e's : ______
4. Cl \(\rightarrow \) ______ ________________________________ Total e's : ______